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ABSTRACT. We exhibit a class of extendable codimension 2 subvarieties in a general hyper-
surface of dimension at least 3 in projective space. As a consequence, we prove that a general
hypersurface of degree d does not support globally generated indecomposable ACM bundles of
any rank if their first Chern class e ≪ d.

1. INTRODUCTION

Let Y be a smooth projective variety and X ⊂ Y be a smooth subvariety. Relating the geometry
of X and Y has been a long standing theme in algebraic geometry. Results in this context are
usually referred to as Lefschetz theorems. The best known results are the Grothendieck-Lefschetz
and Noether-Lefschetz theorems. A special case of the Noether-Lefschetz theorem says that for a
very general hypersurface X ⊂ P3 of degree d ⩾ 4, any curve C ⊂ X is a complete intersection
in P3. In particular, C = X ∩ S for a surface S ⊂ P3 and thus extendable (there is a related
notion of extendability in the literature, a very nice survey on which can be found in [Lop23].
See the references therein, especially [Wah87] and [BM87]).

More generally, throughout this article, we will say a codimension k subscheme Z ⊂ X of a
smooth hypersurface X ⊂ Pn+1 is extendable if Z = X ∩ Σ where Σ ⊂ Pn+1 is a codimension
k subscheme.

With a view to finding a generalisation of the Noether-Lefschetz theorem, Griffiths and Harris
in [GH85], asked whether any curve in a general hypersurface X ⊂ P4 of degree d ⩾ 6 is
extendable. The main idea is that codimension 2 subvarieties in projective spaces are already
more complicated (for instance, not all of them are defined by 2 homogeneous polynomials) and
the expectation was that perhaps the codimension 2 geometry of general hypersurfaces are no
more complicated, thus establishing a Lefschetz type result.

C. Voisin in [Voi88] showed the existence of curves in smooth hypersurfaces X ⊂ P4 which
were not cut out by surfaces in P4. One of the fundamental differences in these two cases is the
following. Consider the normal bundle sequence for the inclusions C ⊂ X ⊂ Pn+1:

0 −→ NC/X −→ NC/Pn+1 → OC(d) −→ 0.

For smooth hypersurfaces in P3, this sequence splits if and only if C is extendable and hence
a complete intersection (see [GH83]). However, this is no longer true once C is a curve in a
smooth hypersurface X ⊂ P4. In this case, the splitting of the above sequence only implies
that C is infinitesimally extendable, i.e., there exists a curve D ⊂ X(1) where X(1) is the first
order thickening of X in P4 such that C = D ∩ X. If C ⊂ X (or more generally a codimension
2 subvariety Z in a smooth hypersurface of dimension n ⩾ 4) is, in addition, arithmetically
Cohen Macaulay (henceforth, we abbreviate this as ACM), then it was shown in [MKRR09]
that if C extends infinitesimally, then it is in fact extendable in the above sense. This fact was
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used to show the existence of a large class of counterexamples generalising Voisin’s examples in
[Voi88]. There are also examples of non-extendable subvarieties in higher codimension (see for
instance [IN02]).

Coming back to the case of curves in hypersurfaces in P4, and their extendability, a conjecture
in [RT19] proposes that any ACM curve C in a general hypersurface X ⊂ P4 of degree d ⩾ 6 is
extendable if the number of generators of the canonical module of the curve C is less than or
equal to 2. When the canonical module has a single generator, the curve C is subcanonical and
the main result of [Rav09] (see also [MKRR07]) states that C is in fact a complete intersection.
When the number of generators of the canonical module is 2, barring a few exceptions, this
conjecture was settled in [RT22].

Extendability of codimension 2 ACM subvarieties in smooth hypersurfaces is related to a
conjecture of Buchweitz-Greuel-Schreyer ([BGS87]) on the non-existence of low rank indecom-
posable ACM vector bundles and a generalisation of this conjecture (see [Fae13] and [RT19]),
results on which are proven, for example, in [Tri16, Tri17, RT19, RT22]. It is also related to the
Ulrich complexity of hypersurfaces ([Bea00, ES03]); we refer to [Cos17, Bea18, CMR+21] for
an overview of this topic, see also [RT22, LR24a, LR24b].

In this article, we exhibit a bigger class of extendable curves C in a general hypersurface
X ⊂ P4 of degree d. As a consequence, we prove a splitting result for ACM bundles E on X. The
expert will immediately see that the results in this article are far from being sharp. Indeed our
aim here has been to showcase how well-known and beautiful results available in the literature
can be brought together to answer some rather long standing questions of interest.

Conventions. We work over the field of complex numbers C. A variety is an integral separated
scheme of finite type over C. A curve (resp. surface) is a variety of dimension one (resp. two).

Acknowledgements. The authors are grateful to Amit Tripathi for very useful discussions. The
first author acknowledges support from the Simons foundation.

2. STATEMENTS OF THE MAIN RESULTS

In this section, we provide the statements of our main results. The aim of this article is to
prove the following:

Theorem 1. Let X ⊂ Pn+1 be a general hypersurface of dimension n ⩾ 3 and degree d. A
smooth ACM codimension 2 subvariety Z ⊂ X is extendable if there exists a positive integer e
such that

(i)
(
e+5
4

)
⩽ 2d− 4,

(ii) IZ/X(e) is globally generated, and
(iii) ωZ ⊗ω−1

X (−e) is globally generated.

Here’s an example of a situation in which such curves arise. Let E be a globally generated
ACM bundle of rank r on a smooth, degree d hypersurface X ⊂ Pn+1 with n ⩾ 3. Any choice
of r− 1 general sections yields an exact sequence

0 −→ O⊕r−1
X −→ E −→ IZ/X(e) −→ 0.

Here Z ⊂ X is the codimension 2 subvariety defined by the vanishing of these r− 1 sections,
IZ/X is its ideal sheaf and e is the first Chern class of E. If e satisfies the inequality (i) in
Theorem 1, then Z is extendable; i.e., Z = X ∩ Σ for some pure codimension 2 subscheme
Σ ⊂ Pn+1.
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The proof of the above statement is based on an induction argument, the main step of which is
proving the assertion when n = 3. The main ingredient of the proof in this case is the following:

Theorem 2. Let X be a general hypersurface in P4 of degree d and let C ⊂ X be an ACM curve.
Consider the normal bundle sequence

(1) 0 −→ NC/X −→ NC/P4 −→ OC(d) −→ 0.

If C satisfies the following conditions:
(i)

(
e+5
4

)
⩽ 2d− 4,

(ii) there exists a smooth surface S ∈ |IC/X(e)|, and
(iii) ωC ⊗ω−1

X (−e) is globally generated,
then the normal bundle sequence (1) splits.

When X is a general hypersurface in P4 of degree d and C ⊂ X is an ACM curve, we show
that the splitting of (1) implies extendability of C. Similar ideas were used by Voisin in [Voi92]
in the context of the extendability of curves in K3 surfaces (in the sense discussed in [Lop23]).

As mentioned in the Introduction, extendability of pure codimension 2 subvarieties is inti-
mately related with the splitting of ACM vector bundles (cf. Lemma 3). In this direction, we
deduce the following by-product of our results:

Theorem 3. Fix a positive integer e. Then a general hypersurface of dimension n ⩾ 3 and
degree d satisfying the inequality

(
e+5
4

)
⩽ 2d−4 does not support a non-split globally generated

ACM bundle with first Chern class c1(E) = OX(e).

Our proof of Theorem 2 makes use of the Beauville-Mérindol criterion (see [BM87]) for
splitting of short exact sequences, combining it with Green’s exactness criterion for Koszul
complexes (see [Gre88]).

3. PRELIMINARIES ON HARTSHORNE-SERRE CORRESPONDENCE

We recall the Hartshorne-Serre correspondence for codimension 2 subschemes in a smooth
variety that will be crucial for us the sequel:

Theorem 4 ([Arr07, Theorem 1]). Let X be a smooth, projective variety and Z ⊂ X be a locally
complete intersection subvariety of codimension 2. Let L be a line bundle such that

(i) H2(X, L−1) = 0, and
(ii) ωZ ⊗ (ωX ⊗ L)−1 is globally generated by (r− 1) sections.

Then there exists a rank r vector bundle E and an exact sequence

0 −→ O⊕r−1
X −→ E −→ IZ/X ⊗ L −→ 0.

Furthermore, if H1(X, L−1) = 0, then E is unique up to an unique isomorphism.

Observe that when n ⩾ 3, X ⊂ Pn+1 is a smooth hypersurface and L = OX(e), we have

ωZ ⊗ (ωX ⊗ L)−1 = ωZ(n+ 2− d− e)

by adjunction. Also note that by the exact sequence

0 −→ OPn+1(−d) −→ IZ/Pn+1 −→ IZ/X −→ 0,

Z ⊂ X is ACM if and only if Z ⊂ Pn+1 is ACM, a fact that we will frequently use often without
any further reference. Let us record the following
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Proposition 1. Let X ⊂ Pn+1 be a general hypersurface of degree d and dimension n ⩾ 3. Let
e ⩾ 1 and let Z ⊂ X be an ACM local complete intersection subvariety for which ωZ⊗ω−1

X (−e)
is globally generated by (r − 1) sections. Then the associated vector bundle E (coming from
Theorem 4) sitting in the exact sequence

(2) 0 −→ O⊕r−1
X −→ E → IZ/X(e) −→ 0.

is ACM. Moreover, E is globally generated if and only if IZ/X(e) is globally generated.

Proof. Taking dual of (2) gives rise to the 4-term exact sequence

(3) 0 −→ OX(−e) −→ E∨ −→ O⊕r−1
X −→ Ext1X(IZ/X(e),OX) −→ 0.

One has the identification Ext1X(IZ/X,ωX) ∼= ωZ using which (3) may be rewritten as

(4) 0 −→ OX(−e) −→ E∨ −→ O⊕r−1
X −→ ℓ −→ 0

where ℓ := ωZ ⊗ω−1
X (−e) = ωZ(n + 2 − d − e). Also, it follows from the construction in

[Arr07] that

(5) H0(X,OX(a)
⊕r−1) −→ H0(C, ℓ(a)) surjects for all a ∈ Z

where the map above is induced by the map O⊕r−1
X −→ ℓ in (4).

Let E1 be the torsion-free sheaf defined as the cokernel of the injection OX(−e) −→ E∨ in
(4). Breaking up the sequence (4), we obtain the two short exact sequences

(6) 0 −→ OX(−e) −→ E∨ −→ E1 −→ 0,

(7) 0 −→ E1 −→ O⊕r−1
X −→ ℓ −→ 0.

To this end, recall that Hi
∗(X,OX) = 0 for 1 ⩽ i ⩽ n − 1. Passing to the cohomology of (7),

we conclude that H1
∗(X, E1) = 0 by (5). Consequently H1

∗(X, E
∨) = 0 by (6) which by duality

implies Hn−1
∗ (X, E) = 0. It follows that E is ACM since Hi

∗(X, E) = 0 for 1 ⩽ i ⩽ n − 2 by
(2). To see the second assertion, consider the commutative diagram:

0 H0(X,O⊕r−1
X )⊗ OX H0(X, E)⊗ OX H0(X, IZ/X(e))⊗ OX 0

0 O⊕r−1
X E IZ/X(e) 0.

Since the left vertical map is surjective, it follows that the middle one is surjective if and only if
the right one is so, whence the conclusion follows. □

As an useful consequence, we deduce the following:

Corollary 1. Let the hypotheses be as in Proposition 1. Then the multiplication map

H0(Z, ℓ(a))⊗ H0(Z,OZ(b)) −→ H0(Z, ℓ(a+ b))

is surjective whenever a, b ⩾ 0.

Proof. Thanks to (5) (and the fact that H0(X,OX(m)) −→ H0(Z,OZ(m)) is surjective for all
m), it is enough to check that

H0(Z,OZ(a))⊗ H0(Z,OZ(b)) −→ H0(Z,OZ(a+ b))
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is surjective whenever a, b ⩾ 0. For this, we note that we have a commutative diagram:

(8)

H0(Pn+1,OPn+1(a))⊗ H0(Pn+1,OPn+1(b)) H0(Pn+1,OPn+1(a+ b))

H0(Z,OZ(a))⊗ H0(Z,OZ(b)) H0(Z,OZ(a+ b))

The horizontal map on the top row is a surjection, and the vertical maps are surjective since Z is
ACM. It follows that the bottom horizontal map is also a surjection. □

4. SURJECTIVITY VIA GREEN’S THEOREM

We now proceed to prove the main technical result that is needed in the proof of Theorem 2.
Throughout this section, X ⊂ P4 is a smooth hypersurface of degree d, and C ⊂ X is an ACM
local complete intersection curve. We also assume that there is a smooth surface S ∈ |IC/X(e)|
(in particular e ⩾ 1) i.e., we have the inclusions

C ⊂ S ⊂ X ⊂ P4

and the corresponding normal bundle sequence

(9) 0 −→ NC/S −→ NC/X −→ NS/X|C −→ 0.

Since NS/X
∼= OS(e), taking determinants, we have the identification

NC/S
∼= detNC/X ⊗ OC(−e) ∼= ωC ⊗ωS

−1 = ℓ

whence the normal bundle sequence in (9) may be rewritten as

(10) 0 −→ ℓ −→ NC/X −→ OC(e) −→ 0.

Taking cohomology, we get the sequence

0 −→ H0(C, ℓ) −→ H0(C,NC/X)
α−→H0(C,OC(e)) −→ · · · .

Setting W := Image(α), we have an exact sequence

0 −→ H0(C, ℓ) −→ H0(C,NC/X) −→ W → 0.

More generally, twisting (10) with OC(b) for any b ∈ Z, we also have exact sequences

(11) 0 −→ H0(C, ℓ(b)) −→ H0(C,NC/X(b)) −→ Wb+e −→ 0,

where
Wb+e := Image

[
H0(C,NC/X(b)) −→ H0(C,OC(b+ e))

]
.

Evidently W = We in the above notation.

Lemma 1. The vector spaces Wb+e for b > 0 are base point free linear subsystems of the
space of global sections H0(C,OC(b+ e)).

Proof. We have commutative diagrams

H0(C,NC/X(b))⊗ OC Wb+e ⊗ OC

NC/X(b) OC(b+ e)

with surjective horizontal maps. By [Voi96] (see also [Pac04]), we see that NC/X(b) is globally
generated for b > 0 and hence the left vertical arrow is surjective for b > 0. This implies
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that the right vertical map is also surective, i.e., Wb+e is a base point free linear subsystem of
H0(C,OC(b+ e)) for b > 0. □

The main result of this section is the following:

Proposition 2. Under the assumptions above, if
(
e+5
4

)
⩽ 2d− 4, then the multiplication map

Wd+e−5 ⊗ H0(C,OC(d)) −→ H0(C,OC(2d+ e− 5))

is surjective.

Before we work out the proof of this result, we recall the following result of Green which will
play a key role for us:

Theorem 5 ([Gre88, Theorem 2]). Let W̃ ⊂ H0(Pr,OPr(a)) be a base-point free linear system.
Then the Koszul complex
p+1∧

W̃ ⊗H0(Pr,OPr(k− a)) −→
p∧
W̃ ⊗H0(Pr,OPr(k)) −→

p−1∧
W̃ ⊗H0(Pr,OPr(k+ a))

is exact in the middle provided that codim(W̃) ⩽ k− p− a.

Proof of Proposition 2. Let W̃ denote the lift of We+1 under the surjective map

H0(P4,OP4(e+ 1)) H0(C,OC(e+ 1)).

We have a commutative square where the vertical maps are the multiplication maps, and the
horizontal maps are the restriction maps:

W̃ ⊗ H0(P4,OP4(2d− 6)) We+1 ⊗ H0(C,OC(2d− 6)

H0(P4,OP4(2d+ e− 5)) H0(C,OC(2d+ e− 5))

µ̃ µ

Claim 1. Under the assumptions of Proposition 2, the map

µ : We+1 ⊗ H0(C,OC(2d− 6) −→ H0(C,OC(2d+ e− 5))

is surjective.

Proof. In Green’s result (Theorem 5 above), letting p = 0, k = 2d+ e− 5, and a = e+ 1, we
see that if

(12) codim(We+1) = codim(W̃) ⩽ 2d− 6,

then the left vertical map µ̃ is surjective which implies that the right vertical map µ is surjective
as well. To prove (12), note that We+1 is a base point free subspace of H0(C,OC(e + 1)) by
Lemma 1. As the restriction map

H0(P4,OP4(e+ 1)) −→ H0(C,OC(e+ 1))

is a surjection, it follows that

codim(We+1) ⩽ h0(OP4(e+ 1)) − 2 =

(
e+ 5

4

)
− 2.

Thus, (12) holds since
(
e+5
4

)
⩽ 2d− 4, whence the multiplication map µ is surjective. □
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We continue with the proof of Proposition 2. Notice that d > 6 by hypothesis as e ⩾ 1. To
finish the proof, we note that (11) induces the following commutative diagram

H0(C, ℓ(1))⊗ H0(C,OC(1))
⊗(d−6) H0(C,NC/X(1))⊗ H0(C,OC(1))

⊗(d−6)

H0(C, ℓ(d− 5)) H0(C,NC/X(d− 5))

which induces
β : We+1 ⊗ H0(C,OC(1))

⊗(d−6) −→ Wd+e−5

as the map between the cokernels of the horizontal maps in the above diagram. This map in turn
gives rise to the commutative diagram

We+1 ⊗ H0(C,OC(1))
⊗(2d−6) We+1 ⊗ H0(C,OC(2d− 6))

Wd+e−5 ⊗ H0(C,OC(d)) H0(C,OC(2d+ e− 5)).

µ1 µ

µd

That the top horizontal map is surjective follows by a diagram similar to (8). The surjectivity of
µd now follows by the surjectivity of µ proven in Claim 1. □

5. PROOF OF THEOREM 2 VIA THE BEAUVILLE-MÉRINDOL CRITERION

We recall a very elegant splitting criterion, due to Beauville and Mérindol (see [BM87,
Lemme 1]) for a sequence of vector bundles on a curve to be split. Since the proof is very short,
we include it to enhance the ease of reading.

Lemma 2 (The Beauville-Mérindol criterion). Let C be a smooth projective curve and

(13) 0 −→ E −→ F −→ G −→ 0

be a short exact sequence of bundles. This sequence splits if
(i) H0(C, F) −→ H0(C,G) is surjective, and

(ii) the cup product map

∪ : H0(C,G)⊗ H0(C, E∨ ⊗ωC) −→ H0(C, E∨ ⊗G⊗ωC)

is surjective.

Proof. We first note that the boundary map H0(C,G)
∂−→H1(C, E) yields the map

∂ : H0(C,G)⊗ H0(C, E∨ ⊗ωC) −→ C.

The short exact sequence (13) corresponds to an element η ∈ Ext1(G,E) ∼= H1(C,G∨ ⊗ E),
and via Serre duality, we treat the element η as a map

η : H0(C,G⊗ E∨ ⊗ωC) −→ C.
To this end, we note the following commutative diagram

(14)

H0(C,G)⊗ H0(C, E∨ ⊗ωC) C

H0(C,G⊗ E∨ ⊗ωC)

∂

∪ η
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Consequently, we have that ∂ = η ◦ ∪. Since the cup product map ∪ is surjective, we have
η = 0 ⇐⇒ ∂ = 0, and the latter is zero by assumption. □

We will now apply the above to the normal bundle sequence (1) to prove Theorem 2:

Proof of Theorem 2. Note that the normal bundle NC/X is rank 2 bundle and as such we have

N∨
C/X

∼= NC/X ⊗
(
detNC/X

)−1 ∼= NC/X ⊗ωX ⊗ω−1
C .

Consequently,

(15) N∨
C/X ⊗ωC

∼= NC/X ⊗ωX.

By the Beauville-Mérindol criterion, we need to check that
(a) the map α : H0(C,NC/P4) −→ H0(C,OC(d)) is surjective, and
(b) the cup product map

H0(C,OC(d))⊗ H0(C,N∨
C/X ⊗ωC) −→ H0(C,N∨

C/X ⊗ωC(d))

is surjective.
Since X is a general hypersurface of degree d in P4, we have (see, for example, [BMK13,
Proposition 3.2])

Image
[
H0(P4,OP4(d) −→ H0(C,OC(d))

]
⊂ Image

[
H0(P4, NC/P4(d) −→ H0(C,OC(d))

]
.

Recall that C is ACM, whence the map

H0(P4,OP4(d)) −→ H0(C,OC(d))

is surjective, which verifies condition (a).
For (b), using the identification in (15), we are reduced to proving that the cup product map

H0(C,OC(d))⊗ H0(C,NC/X(d− 5)) −→ H0(C,NC/X(2d− 5))

is surjective. Let us define
Vd := H0(C,OC(d)).

Note that our hypotheses guarantee the existence of a short exact sequence as in (1) and the
normal bundle sequence (10) for the inclusions C ⊂ S ⊂ X. So we have a commutative diagram

0 H0(C, ℓ(d− 5))⊗ Vd H0(C,NC/X(d− 5))⊗ Vd Wd+e−5 ⊗ Vd 0

0 H0(C, ℓ(2d− 5)) H0(C,NC/X(2d− 5)) W2d+e−5 0

where the vertical maps are multiplication maps. Note that H0(C, ℓ(d − 5)) ̸= 0 since d > 5.
Thus the first vertical map is surjective by Corollary 1. The rightmost vertical map is surjective by
Proposition 2. By the snake lemma, it follows that the middle vertical map is also surjective. □

6. PROOFS OF THEOREM 1 AND THEOREM 3

Let us first make a note of the following elementary

Lemma 3. Let X ⊂ Pn+1 be a smooth hypersurface of degree d, and let Z ⊂ X be a smooth
codimension 2 subvariety defined by the exact sequence

0 −→ O⊕r−1
X −→ E −→ IZ/X(e) −→ 0

where E is a bundle of rank r. If E is split, then Z is extendable.
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Proof. Since E splits into a sum of line bundles, the map

O⊕r−1
X −→ E ∼=

r⊕
i=1

OX(ai)

lifts to a map

O⊕r−1
P4 −→

r⊕
i=1

OP4(ai).

The cokernel of this map is (a twist of) the ideal sheaf of a codimension 2 subscheme Σ ⊂ Pn+1

which satisfies the condition that Z = X ∩ Σ. This, in particular, implies that Σ doesn’t have a
divisorial component. Since codimPn+1(Σ) ⩽ 2 (see for e.g. [Ott95, Lemma 2.7]), we conclude
that Σ is of pure codimension 2, whence Z is extendable. □

We are now ready to provide the proofs of Theorem 1 and Theorem 3:

Proof of Theorem 1. The proof is based by induction on the dimension n. Let us first deal with
the base case:

Claim 2. Theorem 1 holds when n = 3.

Proof. Let C := Z ⊂ X be a smooth ACM curve satisfying the hypotheses of Theorem 1. By
Lemma 3, it is enough to show that E in (2) is split. Recall from [MKRR09, Section 2] that
there exists a short exact sequence

(16) 0 −→ G −→ F −→ IC/X −→ 0

such that

(i) G is ACM and F is split,
(ii) H0

∗(X, F) −→ H0
∗(X, IC/X) is surjective.

Now, since E is globally generated by Proposition 1, we may assume that there is a smooth
S ∈ |IC/X(e)| by choosing a general r-dimensional subspace Vr ⊂ H0(E) containing

Vr−1 := Image
[
H0(X,O⊕r−1

X ) −→ H0(E)
]

(see for e.g. [Ott95, Teorema 2.8], also [CFK23, Remark 3.4]). Consequently, the normal bundle
sequence for the inclusions C ⊂ X ⊂ P4 splits by Theorem 2, whence G splits by [MKRR09,
Proposition 2]. Twisting the exact sequence (2) by OX(−e), we obtain

(17) 0 −→ OX(−e)⊕r−1 −→ E(−e) −→ IC/X −→ 0.

Since F is split, we conclude that the map

H0(X, F∨ ⊗ E(−e)) −→ H0(X, F∨ ⊗ IC/X)

induced by the above exact sequence is surjective as H1(X, F∨ ⊗ OX(−e)) = 0. Thus the map
F −→ IC/X in (16) lifts to a map F −→ E(−e) via (17). Consequently, defining

F̃ := F⊕ OX(−e)⊕r−1
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and using snake lemma, we obtain the following diagram with exact rows and columns:

(18)

0 0

OX(−e)⊕r−1 OX(−e)⊕r−1

0 G F̃ E(−e) 0

0 G F IC/X 0

0 0

Since G is split, we obtain Ext1(E(−e), G) = 0 (recall that E is ACM by Proposition 1).
Consequently the middle row of (18) is split. Since F̃ is split, E splits. □

Let us continue with the proof of Theorem 1. Now we carry out the induction step. Since the
assertion is already proven for n = 3 in Claim 2, we assume n ⩾ 4. Recall the exact sequence

0 −→ O⊕r−1
X −→ E −→ IZ/X(e) −→ 0,

where E is a rank r globally generated ACM bundle on X (see Proposition 1). Setting Xn := X,
Zn−2 := Z, and repeatedly restricting this sequence by general hyperplane sections Xi of
dimension i, one obtains codimension 2 subvarieties Zi−2 of dimension i − 2, and the exact
sequence

(19) 0 −→ OX
⊕r−1
i −→ Ei −→ IZi−2/Xi

(e) −→ 0 for all i ⩾ 3,

where Ei := E|Xi
. It is easy to verify that Ei is ACM for i ⩾ 3, whence Zi−2 ⊂ Xi is ACM

by (19) for i in the same range. As a result, the pair (Zi−2, Xi) satisfies the hypotheses of the
Theorem for all i ⩾ 3. Consequently, E3 is split by the proof of Claim 2, and we inductively
assume Ei is split for some i < n. Write Ei

∼=
⊕r

i=1 OXi
(ai) and note that the composed map

Ei+1 −→ Ei
∼=

r⊕
i=1

OXi
(ai)

lifts to a map

(20) Ei+1 −→
r⊕

i=1

OXi+1
(ai)

via the exact sequence

0 −→
r⊕

i=1

OXi+1
(ai − 1) −→

r⊕
i=1

OXi+1
(ai) −→

r⊕
i=1

OXi
(ai) −→ 0

as H1
∗(Xi+1, E

∨
i+1) = 0 (recall that Ei+1 is ACM). Since (20) is a map between vector bundles

of the same rank, we conclude that it is an isomorphism. Indeed, this is a consequence of the
fact that the determinant of the map is non-zero as it is so on Xi. This implies that Ei+1 itself is
a sum of line bundles, whence E is split by induction. Hence Z is extendable by Lemma 3. □
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Proof of Theorem 3. By the argument of Theorem 1, it is enough to show that E3 is split where
E3 := E|X3

and X3 is a obtained by intersecting n− 3 general hyperplane sections of X. As E3

is globally generated with c1(E3) = OX3
(e), a choice of r− 1 general sections yields an exact

sequence
0 −→ O⊕r−1

X3
−→ E3 −→ IZ1/X3

(e) −→ 0,

where IZ1/X3
is the ideal sheaf of a pure codimension 2 smooth ACM subscheme Z1 in X3.

First assume Z1 = ∅ whence IZ1/X3
= OX3

. In this case, clearly the above exact sequence
is split as H1

∗(X3,OX3
) = 0 whence E3 is split. So, we may assume Z1 ̸= ∅, in particular

H0(X3, IZ1/X3
) = 0. Since Z1 ⊂ X3 is ACM, we see that H0(Z1,OZ1

) = 1, in particular Z1 is
irreducible. To this end, applying the proof of Claim 2, we conclude that E3 is split. □
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