A USEFUL HOMOLOGICAL RESULT

The purpose of this note is to provide details about the mapping cone argument used in the journal version of the proof of [LR24, Corollary 5.3]. Note that similar reasoning is used in various other articles, for e.g. [AK24, Proof of Proposition 3] and [TY22, Proof of Proposition 3.3]. We aim to prove the following:

Proposition 0.1. Consider the commutative diagram

$$0 \longrightarrow F_{2} \xrightarrow{\alpha_{2}} G_{2} \xrightarrow{\beta_{2}} H_{2} \longrightarrow 0$$

$$\downarrow g_{2} \qquad \downarrow h_{2}$$

$$0 \longrightarrow F_{0} \oplus F'_{1} \xrightarrow{\alpha_{1}} G'_{1} \oplus G_{2} \xrightarrow{\beta_{1}} H_{1} \longrightarrow 0$$

$$\downarrow g_{1} \qquad \downarrow h_{1}$$

$$0 \longrightarrow F_{0} \xrightarrow{\alpha_{0}} G_{0} \xrightarrow{\beta_{0}} H_{0} \longrightarrow 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \longrightarrow G_{0} \xrightarrow{\beta_{0}} H_{0} \longrightarrow 0$$

with exact rows and exact right-most column. Assume that the middle column is a complex. Further assume:

- $g_2:G_2\to G_1'\oplus G_2$ is the canonical injection, and
- the induced map $f_1: F_0 \oplus F_1' \to F_0$ is the canonical projection.

Then we have an exact complex:

$$0 \to F_2 \to F_1' \to G_1' \to G_0 \to 0.$$

We first prove three lemmas:

Lemma 0.2. Consider the following commutative diagram

whose rows are exact. Further assume:

H:
$$0 \to H_2 \xrightarrow{h_2} H_1 \xrightarrow{h_1} H_0 \to 0$$

is exact, and

G:
$$0 \rightarrow G_2 \xrightarrow{g_2} G_1 \xrightarrow{g_1} G_0 \rightarrow 0$$

is a complex. Then the diagram above can be completed by a complex

$$\mathbf{F}: \quad 0 \to F_2 \xrightarrow{f_2} F_1 \xrightarrow{f_1} F_0 \to 0$$

such that the mapping cone $\mathbf{M}(\alpha)$ of $\alpha: \mathbf{F} \to \mathbf{G}$ given by

$$\mathbf{M}(\alpha): \quad 0 \to F_2 \xrightarrow{\partial_3} F_1 \oplus G_2 \xrightarrow{\partial_2} F_0 \oplus G_1 \xrightarrow{\partial_1} G_0 \to 0$$

where the map $\partial_i : F_{i-1} \oplus G_i \to F_{i-2} \oplus G_{i-1}$ is given by

$$\partial_i(f,g) = (-f_{i-1}(f), \alpha_{i-1}(f) + g_i(g))$$

is exact.

Proof. The complex F is induced by the diagram above. Moreover, the long exact sequence

$$\cdots \rightarrow H_i(\mathbf{F}) \rightarrow H_i(\mathbf{G}) \rightarrow H_i(\mathbf{H}) \rightarrow \cdots$$

shows that

$$H_i(\mathbf{F}) \cong H_i(\mathbf{G})$$
 for all i .

Consequently, the long exact sequence

$$\cdots \rightarrow H_i(\mathbf{F}) \rightarrow H_i(\mathbf{G}) \rightarrow H_i(\mathbf{M}(\alpha)) \rightarrow \cdots$$

obtained from [Eis95, Proposition A3.19] proves the assertion.

From now on, given $K_1 \oplus K_2$, we will denote the two projections by π_i . By abuse, we will not specify dependence of π_i on the given direct sum, which will be clear from the context.

Lemma 0.3. In (0.2), assume $G_1 = G_1' \oplus G_2$ and the map g_2 is the canonical inclusion of the second factor. Then we have the complex:

$$\mathbf{M}'(\alpha): \quad 0 \to F_2 \xrightarrow{\partial_3'} F_1 \xrightarrow{\partial_2'} F_0 \oplus G_1' \xrightarrow{\partial_1'} G_0 \to 0$$

where

- ∂'₃ = π₁ ∘ ∂₃,
 ∂'₂ is the composition (the first and the last are canonical injection and projection)

$$F_1 \hookrightarrow F_1 \oplus G_2 \xrightarrow{\partial_2} F_0 \oplus G_1' \oplus G_2 \xrightarrow{\pi} F_0 \oplus G_1',$$

• ∂_1' is the restriction of ∂_1 on its direct summand.

Moreover $\mathbf{M}'(\alpha)$ is exact.

Proof. We first check that $\mathbf{M}'(\alpha)$ is a complex. Note that $g_1(g) = g_1(\pi_1(g), 0)$ for any $g \in G_1' \oplus G_2$. Given $a \in F_2$:

$$\partial_2'(\partial_3'(a)) = \partial_2'(\pi_1(-f_2(a), \alpha_2(a)) = -\partial_2'(f_2(a)) = -\pi(\partial_2(f_2(a), 0)) = -\pi(-(f_1f_2)(a), (\alpha_1f_2)(a)) = -\pi(0, (g_2\alpha_2)(a)) = (0, -(\pi_1g_2\alpha_2)(a)) = (0, 0)$$

Given $a \in F_1$:

$$\begin{aligned} \partial_1'(\partial_2'(a)) &= \partial_1'(\pi(\partial_2(a,0)) = \partial_1'(\pi(-f_1(a),\alpha_1(a))) = \partial_1'(-f_1(a),(\pi_1\alpha_1)(a)) = \partial_1(-f_1(a),(\pi_1\alpha_1)(a),0) \\ &= -(\alpha_0f_1)(a) + g_1((\pi_1\alpha_1)(a),0) = -(g_1\alpha_1)(a) + g_1((\pi_1\alpha_1)(a),0) = 0. \end{aligned}$$

Now consider the diagram

where the horizontal maps are canonical injections or projections. Let us check commutativity. Top right square is commutative by definition.

Middle left square is commutative as $\partial_2(0, g) = (0, 0, g)$.

Middle right square is commutative as

$$(\pi \partial_2)(f,g) = \pi(-f_1(f),\alpha_1(f) + g_2(g)) = (-f_1(f),(\pi_1\alpha_1)(f)) = (\pi \partial_2)(f,0) = \partial_2'(f).$$

Bottom left square is commutative as $\partial_1(0,0,g) = 0$.

Bottom right square is commutative as for $f \in F_0$ and $g \in G'_1 \oplus G_2$:

$$\partial_1(f,g) = \alpha_0(f) + g_1(g) = \alpha_0(f) + g_1(\pi_1(g),0) = \partial_1(f,\pi_1(g),0) = \partial_1'(f,\pi_1(g)) = (\partial_1'\pi)(f,g).$$

Setting

$$\mathbf{G}_2: \quad 0 \to G_2 \xrightarrow{\mathrm{Id}} G_2 \to 0,$$

we obtain the exact sequence

$$0 \to \mathbf{G}_2[-1] \to \mathbf{M}(\alpha) \to \mathbf{M}'(\alpha) \to 0$$

which gives the conclusion after passing to homology.

Lemma 0.4. Given a module M, suppose we have a complex:

$$\mathbf{F}_2(M): \quad 0 \to F_3 \xrightarrow{\epsilon_3} M \oplus F_2 \xrightarrow{\epsilon_2} M \oplus F_1 \xrightarrow{\epsilon_1} F_0 \to 0.$$

Assume

- $\epsilon_2(m, f) = (-m, (\pi_2 \circ \epsilon_2)(m, f)).$
- $\pi_1 \circ \epsilon_3 : F_3 \to M$ is zero.

Then we have the complex

F:
$$0 \rightarrow F_3 \xrightarrow{f_3} F_2 \xrightarrow{f_2} F_1 \xrightarrow{f_1} F_0 \rightarrow 0$$

where

- $f_3 = \pi_2 \circ \epsilon_3$,
- f_2 is the composition

$$F_2 \hookrightarrow M \oplus F_2 \xrightarrow{\epsilon_2} M \oplus F_1 \to F_1$$

where the maps are canonical injection and projection, and

• f_1 is the composition of canonical injection and ϵ_1 :

$$F_1 \hookrightarrow M \oplus F_1 \xrightarrow{\epsilon_1} F_0$$
.

Moreover, $H_i(\mathbf{F}) \cong H_i(\mathbf{F}_2(M))$ for all i.

Proof. Let us check that **F** is a complex.

First note that given $f \in F_3$:

$$(\epsilon_2\epsilon_3)(f) = \epsilon_2(0, (\pi_2\epsilon_3)(f)) = (0, (\pi_2\epsilon_2)(0, (\pi_2\epsilon_3)(f))) = (0, 0)$$

whence

$$(\pi_2\epsilon_2)(0,(\pi_2\epsilon_3)(f))=0.$$

Now, we have

$$(f_2f_3)(f) = f_2(\pi_2(\epsilon_3(f))) = (\pi_2\epsilon_2)(0, (\pi_2\epsilon_3)(f)) = \pi_2(0, (\pi_2\epsilon_2)(0, (\pi_2\epsilon_3)(f))) = (\pi_2\epsilon_2)(0, (\pi_2\epsilon_3)(f)) = 0$$
 by the above.

Given $f \in F_2$:

$$(f_1f_2)(f) = f_1((\pi_2\epsilon_2)(0,f)) = \epsilon_1(0,(\pi_2\epsilon_2)(0,f)) = (\epsilon_1\epsilon_2)(0,f) = 0.$$

Now consider the diagram

where the horizontal maps are canonical injections or projections. Let us check commutativity.

Top left square is commutative as $\epsilon_3(f) = (0, (\pi_2 \epsilon_3)(f))$.

Top right square is commutative as $(\pi_1 f_3)(f) = 0$.

Middle left square is commutative as

$$(0, f_2(f)) = (0, (\pi_2 \epsilon_2)(0, f)) = (0, \pi_2(0, (\pi_2 \epsilon_2)(0, f))) = (0, (\pi_2 \epsilon_2)(0, f)) = \epsilon_2(0, f).$$

Middle right square is commutative by the property of ϵ_2 .

Bottom left square is commutative by the definition of f_1 .

Now note that we have the exact sequence of complexes

$$0 \rightarrow \mathbf{F} \rightarrow \mathbf{F}_2(M) \rightarrow \mathbf{M}[-1] \rightarrow 0$$

where

$$\mathbf{M}: 0 \to M \xrightarrow{-\mathrm{Id}} M \to 0.$$

The assertion follows by passing to homology.

Proof of Proposition 0.1. We apply Lemmas 0.2 and 0.3 on (0.1) to obtain the exact complex

$$0 \to F_2 \xrightarrow{\delta_3} F_0 \oplus F_1' \xrightarrow{\delta_2} F_0 \oplus G_1' \xrightarrow{\delta_1} 0.$$

Note that

$$\pi_1(\delta_3(f)) = -\pi_1(f_1(f)) = 0$$
 and $\delta_2(a, b) = (-a, (\pi_1\alpha_1)(a, b)).$

Thus the assumptions of Lemma 0.4 is satisfied whence the assertion follows by the same lemma.

REFERENCES

- [AK24] M. Aprodu, Y. Kim. *Resonance, syzygies, and rank- Ulrich bundles on the del Pezzo threefold.* Preprint, arXiv:2404.12051. [Eis95] D. Eisenbud. *Commutative Algebra: With a View Toward Algebraic Geometry.* Graduate Texts in Mathematics, no. 150.
 - New York: Springer, 1995.
- [LR24] A.F. Lopez, D. Raychaudhury. *Ulrich subvarieties and the non-existence of low rank Ulrich bundles on complete intersections.* Preprint, arXiv:2405.01154.
- [TY22] H.L. Truong, H.N. Yen. Stable Ulrich bundles on cubic fourfolds. Preprint, arXiv:2206.05285.