A USEFUL HOMOLOGICAL RESULT

The purpose of this note is to provide details about the mapping cone argument used in the journal
version of the proof of [LR24, Corollary 5.3]. Note that similar reasoning is used in various other articles,
for e.g. [AK24, Proof of Proposition 3] and [TY22, Proof of Proposition 3.3]. We aim to prove the following:

Proposition 0.1. Consider the commutative diagram
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with exact rows and exact right-most column. Assume that the middle column is a complex. Further
assume:
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e g:Gy— Gi ® G is the canonical injection, and
o the induced map fi : Fy & F, — F is the canonical projection.

Then we have an exact complex:
0— F,— F — G} — Gy— 0.

We first prove three lemmas:

Lemma 0.2. Consider the following commutative diagram
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whose rows are exact. Further assume:
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H: 0—-H, = H —>Hy—0

is exact, and
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is a complex. Then the diagram above can be completed by a complex

F: 0—>F2£>F1£>F0—>0

such that the mapping coneM(a) of a : F — G given by

M@): 0—F2FeG2Rec 2 G—0

where the map 0; : Fi_1 ® G; — F;_» ® G;_ is given by

0i(f,8) = (=fi-1(f),ai-1(f) + 8i(8))
is exact.
Proof. The complex F is induced by the diagram above. Moreover, the long exact sequence

-+— H;(F) — H;(G) — Hi(H) — ---
shows that
H;(F) = H;(G) forall i.

Consequently, the long exact sequence

-+ — H;(F) — H;(G) - Hi(M(a)) — ---

obtained from [Eis95, Proposition A3.19] proves the assertion. O

From now on, given K; & K3, we will denote the two projections by 7;. By abuse, we will not specify
dependence of ; on the given direct sum, which will be clear from the context.

Lemma 0.3. In (0.2), assume G, = G| @ G, and the map g» is the canonical inclusion of the second factor:
Then we have the complex:
/ 9 . 0 ) 9
M (a): 0—>F2—>F1—>F0®G1—>G0—>0
where
L] 6,3 =70 63,
o 0, is the composition (the first and the last are canonical injection and projection)
F ‘—’Fl@GZQZ*F()GBGi@GziFo@GII,

o 6’1 is the restriction of 01 on its direct summand.

Moreover M’ (o) is exact.

Proof. We first check that M’ («) is a complex. Note that g;(g) = g1(71(g),0) forany g € G’1 & Gy.
Given a € F»:

05(05(@)) = 05 (11 (- fo(@), a2 (@) = =05 (fo(@) = —7(02(f2(a),0) = —n(—(fi ) (@), (@1 f2) (@) =
=-71(0,(g2a2)(a)) = (0,— (1 8202)(a)) = (0,0)
Given a € Fy:

01(05(a)) = 0] (m(82(a,0)) =3} (- fi(a), a1 (@) = 0} (- fi(a), (m1a1) (@) = 01 (- fi(a), (m1a1)(a),0)
=—(apf1)(a)+ g1((m1a1)(@),0) =—-(g1a1)(a) + g1((m1a1)(a),0) =0.



Now consider the diagram
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where the horizontal maps are canonical injections or projections. Let us check commutativity.
Top right square is commutative by definition.
Middle left square is commutative as d-(0, g) = (0,0, g).
Middle right square is commutative as
(02)(f, 8) = (= fi(f), a1 (f) + &(8) = (= (), (ma1) () = (@d2)(f,0) = 35 (f).

Bottom left square is commutative as 9 (0,0, g) = 0.
Bottom right square is commutative as for f € Fy and g € G| & Go:

01(f,8 = ao(f) + g1(8) = ao(f) + &1(11(8),0) = 01(f, 11(8),0) = 8} (f, 71(8) = (8, (f, 8-
Setting
Id
Gz: 0—>Gg—>G2—’0,

we obtain the exact sequence
0— Gz[-1] — M(a) =~ M'(a) — 0

which gives the conclusion after passing to homology.
Lemma 0.4. Given a module M, suppose we have a complex:
F,(M): 0—FMeF 2 MeF = F)—0.

Assume

o €2(m, f) = (=m, (m20€2)(m, f)).
e myoe3: F3— M is zero.
Then we have the complex
F: 0—-RLEpLplE 0
where

o fz=maoe€3,
e > is the composition
F—MeF<:MeF —F

where the maps are canonical injection and projection, and
* f1 is the composition of canonical injection and €, :

FL— MoF L.
Moreover, H;(F) = H;(F»(M)) foralli.
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Proof. Letus check that F is a complex.
First note that given f € Fz:

(€2€3)(f) = €2(0, (m2€3) (f)) = (0, (m2€2) (0, (m2€3) (f))) = (0,0)

whence

Now, we have

(f2f3)(f) = fo(ma(e3(f))) = (mw2€2)(0, (7r2e3) (f)) = m2(0, (2€2) (0, (2€3) (f))) = (2€2) (0, (m2€3) (f)) =0

by the above.

(2€2)(0, (2€3)(f)) = 0.

Given f € Fy:

(i) () = f1((m2€2)(0, ) = €1(0, (7m2€2) (0, f)) = (€1€2) (0, ) = 0.

Now consider the diagram
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where the horizontal maps are canonical injections or projections. Let us check commutativity.
Top left square is commutative as e3(f) = (0, (m2€3) (f)).
Top right square is commutative as (7, f3)(f) = 0.
Middle left square is commutative as

(0, £2()) = (0, (m2€2) (0, ) = (0,2(0, (712€2) (0, ) = (0, (w2€2) (0, f)) = €2(0, f).

Middle right square is commutative by the property of €.
Bottom left square is commutative by the definition of f;.
Now note that we have the exact sequence of complexes

0—F— Fy(M) — M[=1] — 0
where
M:0— M=% p—o.

The assertion follows by passing to homology.

Proof of Proposition 0.1. We apply Lemmas 0.2 and 0.3 on (0.1) to obtain the exact complex

0— B2 FReF 2 FRec, 2o

Note that
m163(f)) = -m(f1(f) =0and d2(a, b) = (—a, (m1a1)(a, D).
Thus the assumptions of Lemma 0.4 is satisfied whence the assertion follows by the same lemma.
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